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Spectral-Domain Analysis of Scattering
from E-Plane Circuit Elements

QIU ZHANG AND TATSUO ITOH, FELLOW, IEEE

Abstract —The spectral-domain method is used for anafysis of the
scattering characteristics of E-plane circuit components such as nontouch-
ing E-plane fins. The method deals with inhomogeneous algebraic equa-

tions instead of integraf equations. It provides a number of attractive
features. Numericaf results have been compared with those reported in the
literature for speciaf cases. Severaf data items useful for E-plane config-

urations are included.

I. INTRODUCTION

R
ECENT.LY, finlines [1], [2] and other E-plane struc-

tures [3]–[5] have found wide applications in millimet-

er-wave integrated circuits. A number of passive, active,

and nonreciprocal components have been developed with

the E-plane technique. One of the key elements for passive

E-plane components is the E-plane strip. A comprehensive

design process of E-plane bandpass filters has been re-

ported [6]. The analysis of the E-plane fin connecting the

top and bottom walls is relatively straightforward [6],

because the problem is a two-dimensional one. On the

other hand, no extensive and accurate characterizations of

nontouched E-plane firis seem to exist. A method based on

a variational technique has been introduced for a special

case where there is no dielectric substrate inserted in a

waveguide [7]. The method in [7] is useful for a narrow

strip, because only one current component along the E-

plane direction is used and the assumed current distribu-

tion is constant in the axial (Z) direction.

This paper introduces a new analytical technique to

characterize the scattering phenomena of a number of

planar E-plane obstacles. For instance, it can handle a

wide nontouching E-plane fin on a dielectric substrate.

Unlike the method based on the variational technique,

scattering coefficients of the dominant, as well as higher

order, modes can be derived. The incident mode can be

either dominant or a higher order.

The method in this paper is an extension of the

spectral-domain method commonly used for characteriza-

tions of eigenmodes in a printed transmission line. It is
extended to the excitation problem and hence provides a

set of algebraic equations corresponding to coupled in-

tegral equations that would be derived in the space do-

main. Compared to the integral equation method, the new
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Fig. 1. E-plane strip in a rectangular waveguide. (a) End view. (b) Side
view.

technique has a number of advantages. For instance, alge-

braic equations are easier to handle numerically. Also, the

spectral-domain Green’s functions have simple closed-form

expressions. Compared to the variational method [7], the

present method is not only more versatile but ~ also

attractive from a computational point of view. In the new

method, it is necessary to calculate the eigenvalue of only

the particular scattered mode of interest. The variational

method requires evaluations of all eigenvalues. Further-

more, the method in [7] assumes that only the TE modes

are scattered. By the nature of ‘the formulation, the present

method contains both TE and TM modes in its formu-

lation.

The calculated results for a special case (cl= C2= Cq= 1)

are compared with expe&nental and computed data in [7]

to check the accuracy. Several curves of normalized input

admittance and equivalent circuit element values are pre-

sented for a number of different parameters of the struc-
ture.

11. FORMULATION

In this paper, only the unilateral E-plane fin is treated.

An application to a bilateral configuration is straightfor-

ward.

With reference to Fig. 1, the strip is assumed to be

perfectly conducting and infinitesimally thin. For a given

incident field E‘, the field scattered by the strip can be

expressed by modal expansion. For instance, the EY com-
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c)m(x) = {A~sinh[yz~(x-hi)] +B~cosh[yz~(x-hi)], h1<x<lz1+h2 (2)
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Here, Ci is the relative dielectric constant; yi~ and y~m are the m th eigenmodes of the LSE and LSM modes in the
partially filled waveguide in region i, and they can be obtained by solving the eigenvalue equations [8]. Similar equations

can be written for E,. On the other hand, the scattered fields E: and E: can be expressed as follows, if the induced

current components J-Y(y, z ) and JZ( y, z) are provided:

~$(X, y,Z) ‘~bdy’j’mdz’ [@y(X, y-y ’, Z- Z’)~y(y’, Z’) +GYZ(X, y– y’, z–z’)~z(y’, z’)] (7a)
—w

E:(x, y,z) =~~dy’~~ dz’ [G=Y(x, Y- Y', z-z') JY(YJ, Z')+ Gz.(X, Y- Y', Z- ZI)J. (Y', Z')]. (7b)
o –w

One way to find JY and J= is by applying the integral equations which require the total tangential electric-field

components to be zero on the strip

EJ(x, y,z)+E~(x, y,z)=O (8a)
(x=hl+ h,, y,zon strip).

E:(x, y, Z)+ E:(x, Y,Z) =0 (8b)
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The integral equations are

Jq(h+~25 Y,’) +Jbd!’fw”
dZ’IGyY(hl +h2, Y–Y’, Z–Z’)~Y(Y’, Z’)

– w/2

+Gy=(hl+ h2, y–y’, z–z’).I=(y’, z’)] =0
(

O<y<b,lz

q(h, +h2, y,z) +~bdy’p’ [dz’ GzY(hl+ h2, y–y’, z–z’)~Y(Y’,’)
– w/2

+Gzz(hl +h2, y–y’, z–z’).7z(y’, z’)] =0
(
O<y<b,lzl

If those equations are solved, JY and J, can be obtained.

These JY and J= are then substituted into (7), so that E:

and E,s are available everywhere. If the scattered field

coefficient of a particular mode is needed, the E; and E:

can be used in (l). Each coefficient may be found from

orthogonality of the expansion functions.

Although the hove formulation is correct, we do not

follow such an approach. Instead, we adopt a correspond-

ing procedure in the Fourier-transformed domain. There

are two reasons for using this new technique.

1) In the Fourier-transformed (spectral) domain, we deal

with coupled algebraic equations instead of the coupled

integral equations (9a) and (9b).

2) Derivations of the Green’s functions in the space

domain are very complicated. In the spectral domain, the

Fourier-transformed Green’s functions are given in closed

form.

Let us introduce the Fourier transform as

where

(
8=2 n=O

n 1 n#O

{

~=ln#O
n O n=O.

)<~ (9a)

)
: ~ . (9b)

(12a)

(12b)

The Fourier transform of (9) at x = hl + h z is given by

i;(an, p)+ fl:(an,p)=~;(~. >~) (13a)

E;(an,p)+ E:(an,B)=~:(~n,P) (13b)

where

E:(an, p)= Gyy(an, B)~(an, B)+~yz(~n>B)i(~ .7B)

(14a)

“n~dy~~ f(y, z)e~~zdzF(a.,fl)=/~be~ _~ are the scattered electric fields in the spectral domain. ~YY,

~Y=, and ~zz can be obtained by the immittance approach
nr

(lo)
[9] (see Appendix). Notice that the right sides of (13) are

an=—.
b not zero. This is because the application of the Fourier

The Fourier transform of (1) at x = hl + h‘ is given by ,

1
sin(B+lL)~ sh(lw%w’

+ ‘;” (/3+;..)‘E:’ ][
ejBw’/2

(Mb +C~n 77c3(B– ~mn)f+.w/2 –
j(~–lh) 1)
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transform requires the use of fields not only on the strip

but also t~e ~neaoutside. Hence, (13) contains four un-

knowns, JY, J=, EY, ~d ~=.~n the process of solution by

Galerkin’s met~od, EY }nd E= are eliminated. To this end,

let us expand JY and J= as follows:

1

.E(%,B)= s~Ji(%!B) (15a)
j=l

J

(15b)
j=l

We substitute (15) into (13) and take the inner product of

the resultant equations with basis functions. Use of the

Parseval’s relation eliminates ~~ and ~~. The inner pro~-

ucts of l?; and J;, and of ~~ and J~j are zero, because JYi
and ~j are Fourier transforms of the functions nonzero on

the strip while ~~ and ~~ are transforms of the functions

nonzero outside the strip.

The results are

I J

~ K~<ai+ ~ K~’bj=-SYP, p=l,2, ””” I (16a)
~=1 ,=1

r J

where

TC

.

(a)

(b)

(c)

Fig. 2. (a) An E-plane strip circuit with a matched termination. (b)
Two-port equivalent circuit. (c) Equivalent T-network for a narrow
E-plane strip.

The scattering coefficients C:. and D:. can now be
obtained. Leta us express the left-hand side of (11) with

(14a). ~ince GYY and ~Yz are given in closed forms and ~

and J= are now known, the left-hand side of (11) 1s

completely known. Furthermore, the left-hand side con-

tains poles at B = +- fl~. and /3 = & &., since they are

zeros of the denominators of ~YY and &YZ. These values

provide the eigenvalues of the LSE and LSM modes, yi~

and y~~. The right-hand side of (11) contains LSE poles at

– ~~~ in the C;. term and at + ~~. in the CJn term. It

contains LSM poles at – j3~. in the D;n term and at

+ /?A. in the D;. term. Therefore, Cm+nand DJ~ can be

obtained by residue calculus.

where * indicates the complex conjugate. This process corresponds to the use of the orthogonality

For a given incident field, we solve (16) and find a, and relationship to find the modal coefficients in the space

bj. Hence, ~ and ~ are now given. domain.
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TABLE I
CONFIRMATIONOF POWERCONSERVATION

t

‘(mm)
R T IR]2 + IT12

0.5 -.02008 -.02598 j .79080. -.61119 j 1.00000
1.0 -.14712 -.13549 J .66376 -.72071 j 1.00000

1.5 -.70508 -.10766 j .10580 -.69288 j 1.00000
2.0 -.78485 .61825 j .02602 .03304 j 1.00000

2.5 -.53859 .77455 j .27229 .18934 j 1.00000

3.0 -.45482 .79016 j .35606 .20495 J 1.00000

3.5 -.38694 .79227 j .42394 .20705 j 1.00000
hl= h~ = 3.43 mm; h2 =0.254 mm; q =63 =1; b=3.56 mm; w =1.0 m; ~= 35 GHz; Cz= 2.2.

It should be noted that in the case of E-plane fins

connecting the top and bottom wall, the above equations

are simplified. Since there is no field variations in the

y-direction and only TE~O modes are scattered for a TEIO

excitation, we have only the one equation (13a). All the

Fourier-transformed quantities are functions of ~ only.

III. NUMERICAL RESULTS

To compare the present method with the experimental

and computed data in the previous publication [7], the

special case c1 = c~ = c~ = 1 is considered first. We assume

that a dominant-mode incident electric field EYIO =

– j&@l(x) e- Y8’Oz,where OI(x) is defined in (2), comes
from the left of the waveguide. The E-plane fin shown in

Fig. 2(a) may be represented by an equivalent T-network,

as shown in Fig. 2(b). When the waveguide is terminated

with a matched load, the normalized input admittance may

be represented by

1–R
~n=Gin+jBti=—

l+R
(20)

where R is the reflection coefficient for the dominant

mode, and can be determined in the present method by

means of (19). In this study, the current basis functions are

chosen as

Jyi(y, z)=
cOs[(k-1H+31
m2Z 2

1– ~

.sin[(2’-1H+i)l
m

(21a)

1– ;

JZj(y, z)=
s~[k(%+il:os[(z’-l)(;+;)l
{* /q

(21b)

where k and 1 are integers, and i and j are given by a

combination of k and 1. The equivalent circuit for a

nontouching fin can be expressed as in Fig. 2(c) if the strip

is not too wide. We can determine the normalized reac-

tance Xl and X2 after Yti in (20) is obtained. The

expressions of Xl and X2 are given by

(22b)

The sign in (22a) and (22b) can be determined by the

Foster reactance theorem in which dx/dw >0 has to be

satisfied for a lossless element. We can also determine the

values of C and L in the equivalent circuit Fig. 2(c), once

X2 is found, under the assumption that the variations of C

and L with frequency are small. The capacitance and

inductance can be obtained by solving

tions

1
UL– —=XZ

C@
1 dX2

L+— —
CU2 = du “

the coupled equa-

(23a)

(23b)

The numerical result has been checked by the power

conservation law in which the equation IR 12+ IT 12= 1 has

to be satisfied. R and T are the reflection and transmis-

sion coefficients for the dominant mode, and can be

determined from C; and CJ which are given by (19). The

calculated results for different parameters are given in

Table I. It shows that IR12 + ITI 2 is essentially 1. The

convergence test with different numbers of basis functions

has been performed. Although the accuracy can be in-

creased with a larger number of basis functions, computa-

tion efforts also increase.

A comparison of the normalized susceptance versus

frequency between the numerical results obtained by the

present approach and those given in [7] is shown in Fig.

3(a) and (b). It is found that the numerical results agree
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Fig. 3. Normalized suGceptance of an E-plane strip in an X-band
waveguide terminated with a matched load for Cl = C2= 63=1; a = 22.86
mm and b =10.16 mm. (a) hl + hz =12.57 mm, d = 7.37 mm, w = 3.38
mm. (b) hl + h2 =11.43 mm, d= 9.19 mm, w =1.7 mm.

well with the experimental data and Chang’s data. It is

believed that the present method is more accurate and can

be improved systematically with the use of more basis

functions. Fig. 4(a) and (b) show the variations in normal-
ized admittance versus frequency with different values of

dielectric constant of the substrate in region 2. As the

dielectric constant of the substrate increases, the resonant

frequency at which Bin becomes zero decreases. This phe-

nomenon happens beeause as the dielectric constant of the

substrate increases, the wavelengths corresponding to each

mode become shorter. The resonant frequency and the

10

5

co.-
❑

-lo

-Is

-20

(b)

Fig. 4. Normalized admittance of an E-plane strip in an X-band wave-
guide terminated with a matched load versus frequency for different
vrdues of dielectric constant of the substrate. Cl= C3=1, hl =11.57 mm,
h ~ = 1 mm, d = 7.37 mm, and w = 3.38 mm. (a) Normalized conduc-
tance versus frequency. (b) Normalized susceptance versus frequency.

characteristics of input admittance of the considered struc-

ture can be controlled by the dielectric constant of the
substrate.

Figs. 5 and 6 show the variations of normalized admit-

tance with the height and width of the strip at different

frequencies for an E-plane fin inserted in a Ku-band

rectangular waveguide. Figs. 7 and 8 show the values of Xl

and Xz versus the height d and the width w of the strip in

an X-band rectangular waveguide. We note that for a
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Fig. 5. Norrnafized admittance of an E-plane strip in a Ku-band wave-
guide terminated with a matched load versus strip height for different
values of frequency. c1= C2=1, 62 = 2.2, hl = 3.43 mm, hl = 0.254
mm, a = 7.11 mm, b = 3.56 mm, w = 1 mm. (a) Normalized conduc-
tance versus strip height. (b) Normalized susceptance versus stri height.

given frequency, Xl is not sensitive to d whereas X2

increases with d. When w increases, Xl increases. On the

other hand, Xz decreases with w for a higher frequency

and increases in a certain region of w for lower frequency

(curve A in Fig. S(b)). Figs. 9 and 10 are the data corre-

sponding to those in Figs. 7 and 8 except that the frequen-

cies are in the Ka-band. Figs. 11 and 12 show Xl and Xz

versus frequency with different values of height and width

1+

11 1
A, 35. o GHz
B: 32.5 GHz
C. 30.0 CHZ

\

D: 27.5 GHz

12
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? 1
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(a)

10 ) 1 1 1 I I ! I I

a -

6

+ -

2 -

rnE

%0 -
:

z
~ -2

-+ -

-6 -

-8 -

-lo

-12 ~
o

-1

1 ! 1 [ 1 1 L d
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(b)

Fig. 6. Normalized admittance of an E-plane strip in a Ka-band wave-
guide terminated with a matched load versus strip width for different
vah3es of frequency. ●1= C3=1,

:2 = 2.2, hl = 3.43 mm, hz = 0,254
mm, and d =1.78 mm. (a) Normahzed conductance versus strip width.
(b) Normalized susceptance versus strip width.

for the Ku-band waveguide. In Fig. 12, it is seen that for a

narrow strip, Xl varies slowly as the frequency is in-

creased, while X2 varies faster for a narrower strip than

for a wider one. Fig. 13 shows the variation of normalized

capacitance C and normalized inductance L with d. We

note that there are two regions. In one of them (approxi-

mately corresponding to d > w, in this calculation w =1.0

mm) C increases and L decreases as the frequency in-
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Fig. 7. Normalized reactance of equivalent circuit of an E-plane strip
in an X-band waveguide versus strip height for different values of
frequency. c1= C3= 1, C2= 2.1, hl = 11.57 mm, hz = 1 mm, and w =
3.38 mm. (a) Normalized Xl versus strip height. (b) Normalized X2
versus strip height.
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Fig. 8. Normalized reactance of equivalent circuit of an E-plane strip
in an X-band waveguide versus strip width for different values of
frequency. c1= C3=1, C2= 2.1, hl =11.57 mm, hz =1 mm, and d = 7.37
mm. (a) Normalized Xl versus strip width. (b) Normalized X2 versus
strip width.
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Fig. 9. Normalized reactance of equivalent circuit of an .E-plane strip
in a Z&band waveguide versus strip height for different values of
frequency. c1= C3=1, .s2= 2.2, III= 3.43 mm, hz = 0.254 m, and w =1
mm. (a) Normalized Xl versus strip height. (b) Normalized X2 versus
strip height.
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Fig. 10. Normalized reactance of equivalent circuit of an E-plane strip
in a Ku-band waveguide versus strip width for different vafues of

frequency. q = ~3=1, q = 2.2, hl = 3.43 mm, hz = 0.254 mm, ~d

d = 2.45. (a) Normalized Xl versus strip width. (b) Normalized X2
versus strip width.
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Fig. 11. Normalized reactance of equivalent circuit of an .&plane strip
in a Ku-band waveguide versus frequency for different strip heights.
c1 =63 =1, @ez = 2.2, hl = 3.43 mm, h2 = 0.254 mm, and w =1 mm.
(a) Normalized Xl versus frequency. (b) Normalized X2 versus
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Fig. 12. Normalized reactance of equivalent circuit of an E-plane strip
in a Ku-band waveguide versus frequency for different strip widths.
c1 = es =1, C2 = 2.2, hl = 3.43 mm, h2 = 0.254 mm, and d = 2.45 mm.

(a) Normalized Xl versus frequency. (b) Normalized X2 versus
frequency.
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Fig. 13. Normalized equivalent circuit element values C and L of a Fig. 14. Normalized equivalent circuit element vafues C and L. of a
narrow E-plane strip as a function of strip height. c1 = <3 =1, (2 = 2.2, narrow E-plane strip as a function of strip width. ●1 = 63 =1, Cz = 2.2,

/rl = 3.43 mm, h2 = 0.254 mm, and w = 1 mm. (a) Normalized C versus lrl = 3.43 mm, h2 = 0.254 mm, and d = 2.45 mm. (a) Normalized C
strip height. (b) Normalized L versus strip height. versus strip width. (b) Normalized L versus strip width.
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creases. In the other region, C decreases and L increases

as frequency becomes higher. It is conjectured that this

phenomenon is related to the field distributions and to the

use of the equivalent circuit chosen here. Fig, 14 shows the

variation of C and L with w for different values of

frequency.

IV. CONCLUSIONS

A new analytical technique has been developed here

which can be used for characterizations of the scattering

phenomena of planar E-plane obstacles. The numerical

results for a special case agree well with experimental and

published data. The curves of normalized input admittance

and equivalent circuit element values are presented for a

number of different parameters of this structure. This

technique is believed to be useful in the design of micro-

wave filters and other planar circuit components.

AppENDIX

CLOSED-FORM EXPRESSION OF GREEN’S FUNCTIONS

IN THE SPECTRAL DOMAIN

According to [9], the TM-to-X (LSM) and TE-to-X

(LSE) equivalent transmission lines for the E-plane strip

described in Fig. 1’ can be drawn in Fig. 15. Here,

-{yi– a;+~2–cik2 (Al)

z~i = J- (A2a)
j~co.fi

Zmi= – ‘~ i=l,2,3, n = 0,1,2,3 . . . . (A2b)
Yi

The driving point input impedance

equivalent circuit is given by

where

y;~ = ymq”cothygh~

Z’ for the TM

(A3a)

(A3b)

Y~2 + Y;COthY2~ 2

Y;= YTM2 (A3c)
Y;+ ymzcothyzhJ

y;= ywlcothylhl. (A3d)

Notice that y~ and y; are input admittances looking left

at x = hl and x = hl + h ~, respectively, while y;Y is the

one looking right at x = hl + h ~. Similar equations can be

written for the TE equivalent circuit

1
Zh = (A4a)

Y;+ Y:y

y;Y = YTF33 cOthY3h3 (A4b)

y;= ymlcothylhl (A4c)

yTjW + yfcothyJh J
Y;= yTE2 h (A4d)

Y1 + YTE2cothY2h 2 “

‘~l, $M, Yz, ZTM2 Y3, ZTM3

[ T I

L-Ii--J
x-= o X=hl X=hl+hz X=a

Y1 ,Z, c, ‘2’ ‘TEZ ‘3, ZTE3

T

/

X.o X=h, x=hl+ hZ X=a

Fig. 15. The TM and TE equivalent transmission lines for the E-plant
strip.

Finally, the Green’s functions in the spectral domain can

be represented by Zh and 2’ as follows [8]:

~yy = ZeN: + ZhN; (A5a)

~Yz = @,Y= (Ze – Zh)NzNY (A5b)

~ZZ = ZhN~ + ZeN; (A5c)

where

(A6a)

(A6b)

Note that the denominators of Z’ and Zh are the eigen-

value equations of the LSE and LSM modes.
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